801 research outputs found

    Orbital and Spin Parameter Variations of Partial Eclipsing Low Mass X-ray Binary X 1822-371

    Get PDF
    We report our measurements for orbital and spin parameters of X 1822-371 using its X-ray partial eclipsing profile and pulsar timing from data collected by the Rossi X-ray Timing Explorer (RXTE). Four more X-ray eclipse times obtained by the RXTE 2011 observations were combined with historical records to trace evolution of orbital period. We found that a cubic ephemeris likely better describes evolution of the X-ray eclipse times during a time span of about 34 years with a marginal second order derivative of ddotPorb=(1.05pm0.59)imes1019ddot{P}_{orb}=(-1.05 pm 0.59) imes 10^{-19} s1^{-1}. Using the pulse arrival time delay technique, the orbital and spin parameters were obtained from RXTE observations from 1998 to 2011. The detected pulse periods show that the neutron star in X 1822-371 is continuously spun-up with a rate of dotPs=(2.6288pm0.0095)imes1012dot{P}_{s}=(-2.6288 pm 0.0095) imes 10^{-12} s s1^{-1}. Evolution of the epoch of the mean longitude l=pi/2l=pi /2 (i.e. Tpi/2T_{pi / 2}) gives an orbital period derivative value consistent with that obtained from the quadratic ephemeris evaluated by the X-ray eclipse but the detected Tpi/2T_{pi / 2} values are significantly and systematically earlier than the corresponding expected X-ray eclipse times by 90pm1190 pm 11 s. This deviation is probably caused by asymmetric X-ray emissions. We also attempted to constrain the mass and radius of the neutron star using the spin period change rate and concluded that the intrinsic luminosity of X 1822-371 is likely more than 103810^{38} ergs s1^{-1}.postprin

    Expected Shannon entropy and Shannon differentiation between subpopulations for neutral genes under the finite island model

    Full text link
    <div><p>Shannon entropy <i>H</i> and related measures are increasingly used in molecular ecology and population genetics because (1) unlike measures based on heterozygosity or allele number, these measures weigh alleles in proportion to their population fraction, thus capturing a previously-ignored aspect of allele frequency distributions that may be important in many applications; (2) these measures connect directly to the rich predictive mathematics of information theory; (3) Shannon entropy is completely additive and has an explicitly hierarchical nature; and (4) Shannon entropy-based differentiation measures obey strong monotonicity properties that heterozygosity-based measures lack. We derive simple new expressions for the expected values of the Shannon entropy of the equilibrium allele distribution at a neutral locus in a single isolated population under two models of mutation: the infinite allele model and the stepwise mutation model. Surprisingly, this complex stochastic system for each model has an entropy expressable as a simple combination of well-known mathematical functions. Moreover, entropy- and heterozygosity-based measures for each model are linked by simple relationships that are shown by simulations to be approximately valid even far from equilibrium. We also identify a bridge between the two models of mutation. We apply our approach to subdivided populations which follow the finite island model, obtaining the Shannon entropy of the equilibrium allele distributions of the subpopulations and of the total population. We also derive the expected mutual information and normalized mutual information (“Shannon differentiation”) between subpopulations at equilibrium, and identify the model parameters that determine them. We apply our measures to data from the common starling (<i>Sturnus vulgaris</i>) in Australia. Our measures provide a test for neutrality that is robust to violations of equilibrium assumptions, as verified on real world data from starlings.</p></div

    A two-stage architecture for stock price forecasting by integrating self-organizing map and support vector regression

    Get PDF
    Author name used in the publication: JJ Po-An Hsieh2008-2009 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Acid-sensing ion channel 3 mediates peripheral anti-hyperalgesia effects of acupuncture in mice inflammatory pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Peripheral tissue inflammation initiates hyperalgesia accompanied by tissue acidosis, nociceptor activation, and inflammation mediators. Recent studies have suggested a significantly increased expression of acid-sensing ion channel 3 (ASIC3) in both carrageenan- and complete Freund's adjuvant (CFA)-induced inflammation. This study tested the hypothesis that acupuncture is curative for mechanical hyperalgesia induced by peripheral inflammation.</p> <p>Methods</p> <p>Here we used mechanical stimuli to assess behavioral responses in paw and muscle inflammation induced by carrageenan or CFA. We also used immunohistochemistry staining and western blot methodology to evaluate the expression of ASIC3 in dorsal root ganglion (DRG) neurons.</p> <p>Results</p> <p>In comparison with the control, the inflammation group showed significant mechanical hyperalgesia with both intraplantar carrageenan and CFA-induced inflammation. Interestingly, both carrageenan- and CFA-induced hyperalgesia were accompanied by ASIC3 up-regulation in DRG neurons. Furthermore, electroacupuncture (EA) at the ST36 rescued mechanical hyperalgesia through down-regulation of ASIC3 overexpression in both carrageenan- and CFA-induced inflammation.</p> <p>Conclusions</p> <p>In addition, electrical stimulation at the ST36 acupoint can relieve mechanical hyperalgesia by attenuating ASIC3 overexpression.</p

    Age groups and spread of influenza: implications for vaccination strategy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The unpredictable nature of the potentially devastating impact of 2009 pH1N1 influenza pandemic highlights the need for pandemic preparedness planning, where modeling studies could be most useful for simulations of possible future scenarios.</p> <p>Methods</p> <p>A compartmental model with pre-symptomatic and asymptomatic influenza infections is proposed which incorporates age groups as well as intervention measures such as age-specific vaccination, in order to study spread of influenza in a community.</p> <p>Results</p> <p>We derive the basic reproduction number and other effective reproduction numbers under various intervention measures. For illustration, we make use of the Pneumonia and Influenza (P&I) mortality data and vaccination data of the very young (age 0-2) and the very old (age >64) during 2004-2005 Taiwan winter influenza season to fit our model and to compute the relevant reproduction numbers. The reproduction number for this winter flu season is estimated to be slightly above one (~1.0001).</p> <p>Conclusions</p> <p>Comparatively large errors in fitting the P&I mortality data of the elderly (>64) were observed shortly after winter school closings in January, which may indicate the impact of younger, more active age groups transmitting influenza to other age groups outside of the school settings; in particular, to the elderly in the households. Pre-symptomatic infections seemed to have little effect on the model fit, while asymptomatic infection by asymptomatic infectives has a more pronounced impact on the model fit for the elderly mortality, perhaps indicating a larger role in disease transmission by asymptomatic infection. Simulations indicate that the impact of vaccination on the disease incidence might not be fully revealed in the change (or the lack thereof) in the effective reproduction number with interventions, but could still be substantial. The estimated per contact transmission probability for susceptible elderly is significantly higher than that of any other age group, perhaps highlighting the vulnerability of the elderly due to close contacts with their caretakers from other age groups. The relative impact of targeting the very young and the very old for vaccination was weakened by their relative inactivity, thus giving evidence of the lack of impact of vaccinating these two groups on the overall transmissibility of the disease in the community. This further underscores the need for morbidity-based strategy to prevent elderly mortality.</p

    Induction of cell cycle changes and modulation of apoptogenic/anti-apoptotic and extracellular signaling regulatory protein expression by water extracts of I'm-Yunity™ (PSP)

    Get PDF
    BACKGROUND: I'm-Yunity™ (PSP) is a mushroom extract derived from deep-layer cultivated mycelia of the patented Cov-1 strain of Coriolus versicolor (CV), which contains as its main bioactive ingredient a family of polysaccharo-peptide with heterogeneous charge properties and molecular sizes. I'm-Yunity™ (PSP) is used as a dietary supplement by cancer patients and by individuals diagnosed with various chronic diseases. Laboratory studies have shown that I'm-Yunity™ (PSP) enhances immune functions and also modulates cellular responses to external challenges. Recently, I'm-Yunity™ (PSP) was also reported to exert potent anti-tumorigenic effects, evident by suppression of cell proliferation and induction of apoptosis in malignant cells. We investigate the mechanisms by which I'm-Yunity™ (PSP) elicits these effects. METHODS: Human leukemia HL-60 and U-937 cells were incubated with increasing doses of aqueous extracts of I'm-Yunity™ (PSP). Control and treated cells were harvested at various times and analyzed for changes in: (1) cell proliferation and viability, (2) cell cycle phase transition, (3) induction of apoptosis, (4) expression of cell cycle, apoptogenic/anti-apoptotic, and extracellular regulatory proteins. RESULTS: Aqueous extracts of I'm-Yunity™ (PSP) inhibited cell proliferation and induced apoptosis in HL-60 and U-937 cells, accompanied by a cell type-dependent disruption of the G(1)/S and G(2)/M phases of cell cycle progression. A more pronounced growth suppression was observed in treated HL-60 cells, which was correlated with time- and dose-dependent down regulation of the retinoblastoma protein Rb, diminution in the expression of anti-apoptotic proteins bcl-2 and survivin, increase in apoptogenic proteins bax and cytochrome c, and cleavage of poly(ADP-ribose) polymerase (PARP) from its native 112-kDa form to the 89-kDa truncated product. Moreover, I'm-Yunity™ (PSP)-treated HL-60 cells also showed a substantial decrease in p65 and to a lesser degree p50 forms of transcription factor NF-κB, which was accompanied by a reduction in the expression of cyclooxygenase 2 (COX2). I'm-Yunity™ (PSP) also elicited an increase in STAT1 (signal transducer and activator of transcription) and correspondingly, decrease in the expression of activated form of ERK (extracellular signal-regulated kinase). CONCLUSION: Aqueous extracts of I'm-Yunity™ (PSP) induces cell cycle arrest and alterations in the expression of apoptogenic/anti-apoptotic and extracellular signaling regulatory proteins in human leukemia cells, the net result being suppression of proliferation and increase in apoptosis. These findings may contribute to the reported clinical and overall health effects of I'm-Yunity™ (PSP)

    Regulation of cell cycle transition and induction of apoptosis in HL-60 leukemia cells by lipoic acid: role in cancer prevention and therapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lipoic acid (LA), a potent antioxidant, has been used as a dietary supplement to prevent and treat many diseases, including stroke, diabetes, neurodegenerative and hepatic disorders. Recently, potent anti-tumorigenic effects induced by LA were also reported and evident as assayed by suppression of cell proliferation and induction of apoptosis in malignant cells. However, the mechanism by which LA elicits its chemopreventive effects remains unclear.</p> <p>Methods and Results</p> <p>Herein, we investigated whether LA elicits its anti-tumor effects by inducing cell cycle arrest and cell death in human promyelocytic HL-60 cells. The results showed that LA inhibits both cell growth and viability in a time- and dose-dependent manner. Disruption of the G<sub>1</sub>/S and G<sub>2</sub>/M phases of cell cycle progression accompanied by the induction of apoptosis was also observed following LA treatment. Cell cycle arrest by LA was correlated with dose-dependent down regulation of Rb phosphorylation, likely via suppression of E2F-dependent cell cycle progression with an accompanying inhibition of cyclin E/cdk2 and cyclin B1/cdk1 levels. Evidence supporting the induction of apoptosis by LA was based on the appearance of sub-G<sub>1 </sub>peak in flow cytometry analysis and the cleavage of poly(ADP-ribose) polymerase (PARP) from its native 112-kDa form to the 89-kDa truncated product in immunoblot assays. Apoptosis elicited by LA was preceded by diminution in the expression of anti-apoptotic protein bcl-2 and increased expression of apoptogenic protein bax, and also the release and translocation of apoptosis inducing factor AIF and cytochrome c from the mitochondria to the nucleus, without altering the subcellular distribution of the caspases.</p> <p>Conclusion</p> <p>This study provides evidence that LA induces multiple cell cycle checkpoint arrest and caspase-independent cell death in HL-60 cells, in support of its efficacious potential as a chemopreventive agent.</p

    NADPH oxidase-mediated redox signal contributes to lipoteichoic acid-induced MMP-9 upregulation in brain astrocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lipoteichoic acid (LTA) is a component of gram-positive bacterial cell walls and may be elevated in the cerebrospinal fluid of patients suffering from meningitis. Among matrix metalloproteinases (MMPs), MMP-9 has been observed in patients with brain inflammatory diseases and may contribute to the pathology of brain diseases. Moreover, several studies have suggested that increased oxidative stress is implicated in the pathogenesis of brain inflammation and injury. However, the molecular mechanisms underlying LTA-induced redox signal and MMP-9 expression in brain astrocytes remain unclear.</p> <p>Objective</p> <p>Herein we explored whether LTA-induced MMP-9 expression was mediated through redox signals in rat brain astrocytes (RBA-1 cells).</p> <p>Methods</p> <p>Upregulation of MMP-9 by LTA was evaluated by zymographic and RT-PCR analyses. Next, the MMP-9 regulatory pathways were investigated by pretreatment with pharmacological inhibitors or transfection with small interfering RNAs (siRNAs), Western blotting, and chromatin immunoprecipitation (ChIP)-PCR and promoter activity reporter assays. Moreover, we determined the cell functional changes by migration assay.</p> <p>Results</p> <p>These results showed that LTA induced MMP-9 expression via a PKC(α)-dependent pathway. We further demonstrated that PKCα stimulated p47<sup>phox</sup>/NADPH oxidase 2 (Nox2)-dependent reactive oxygen species (ROS) generation and then activated the ATF2/AP-1 signals. The activated-ATF2 bound to the AP-1-binding site of MMP-9 promoter, and thereby turned on MMP-9 gene transcription. Additionally, the co-activator p300 also contributed to these responses. Functionally, LTA-induced MMP-9 expression enhanced astrocytic migration.</p> <p>Conclusion</p> <p>These results demonstrated that in RBA-1 cells, activation of ATF2/AP-1 by the PKC(α)-mediated Nox(2)/ROS signals is essential for upregulation of MMP-9 and cell migration enhanced by LTA.</p

    Neuroinflammation, Mast Cells, and Glia: Dangerous Liaisons

    Get PDF
    The perspective of neuroinflammation as an epiphenomenon following neuron damage is being replaced by the awareness of glia and their importance in neural functions and disorders. Systemic inflammation generates signals that communicate with the brain and leads to changes in metabolism and behavior, with microglia assuming a pro-inflammatory phenotype. Identification of potential peripheral-to-central cellular links is thus a critical step in designing effective therapeutics. Mast cells may fulfill such a role. These resident immune cells are found close to and within peripheral nerves and in brain parenchyma/meninges, where they exercise a key role in orchestrating the inflammatory process from initiation through chronic activation. Mast cells and glia engage in crosstalk that contributes to accelerate disease progression; such interactions become exaggerated with aging and increased cell sensitivity to stress. Emerging evidence for oligodendrocytes, independent of myelin and support of axonal integrity, points to their having strong immune functions, innate immune receptor expression, and production/response to chemokines and cytokines that modulate immune responses in the central nervous system while engaging in crosstalk with microglia and astrocytes. In this review, we summarize the findings related to our understanding of the biology and cellular signaling mechanisms of neuroinflammation, with emphasis on mast cell-glia interactions

    Grey and white matter correlates of recent and remote autobiographical memory retrieval:Insights from the dementias

    Get PDF
    The capacity to remember self-referential past events relies on the integrity of a distributed neural network. Controversy exists, however, regarding the involvement of specific brain structures for the retrieval of recently experienced versus more distant events. Here, we explored how characteristic patterns of atrophy in neurodegenerative disorders differentially disrupt remote versus recent autobiographical memory. Eleven behavioural-variant frontotemporal dementia, 10 semantic dementia, 15 Alzheimer's disease patients and 14 healthy older Controls completed the Autobiographical Interview. All patient groups displayed significant remote memory impairments relative to Controls. Similarly, recent period retrieval was significantly compromised in behavioural-variant frontotemporal dementia and Alzheimer's disease, yet semantic dementia patients scored in line with Controls. Voxel-based morphometry and diffusion tensor imaging analyses, for all participants combined, were conducted to investigate grey and white matter correlates of remote and recent autobiographical memory retrieval. Neural correlates common to both recent and remote time periods were identified, including the hippocampus, medial prefrontal, and frontopolar cortices, and the forceps minor and left hippocampal portion of the cingulum bundle. Regions exclusively implicated in each time period were also identified. The integrity of the anterior temporal cortices was related to the retrieval of remote memories, whereas the posterior cingulate cortex emerged as a structure significantly associated with recent autobiographical memory retrieval. This study represents the first investigation of the grey and white matter correlates of remote and recent autobiographical memory retrieval in neurodegenerative disorders. Our findings demonstrate the importance of core brain structures, including the medial prefrontal cortex and hippocampus, irrespective of time period, and point towards the contribution of discrete regions in mediating successful retrieval of distant versus recently experienced events
    corecore